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The awareness that the genotoxicity of combustion
exhausts can be accounted for by the presence of a small
number of polycyclic aromatic hydrocarbons (PAHs), of
which cyclopenta-fused derivatives (CP-PAHs), such as
cyclopenta[cd]pyrene (6),1 pose an extraordinary biohaz-
ard,2 has made the elucidation of CP-PAH formation
mechanisms under high-temperature conditions a topical
issue.3 Additional impetus is given by the proposal that
CP-PAHs also may play a role in fullerene build up under
arc and flame conditions.4
The origin of cyclopenta[cd]pyrene (6) during combus-

tion has been rationalized by invoking the intermediacy
of 1-ethynylpyrene, thought to arise from either C2 or
ethyne (C2H2) addition to pyrene.1,5 This proposal was
supported by flash vacuum thermolysis (FVT) experi-
ments using 1-(1-chloroethenyl)pyrene (“masked” 1-eth-
ynylpyrene).6,7 Under FVT conditions 1-(1-chloroethenyl)-
pyrene is quantitatively converted in situ into 1-eth-
ynylpyrene, which subsequently gave 6 at T > 1000 °C
(mass recovery 90%).1 By similar approaches, important
and abundant CP-PAH effluents have been prepared in
reasonable to good yields as well as with good mass
recoveries.8
Recently, other thermal pathways involving either

selective (CP)-PAH isomerizations (“annealing”)9 or PAH
interconversions10 were disclosed. For example, ubiqui-

tous 6 is obtained from (CP)-PAHs such as benzo[ghi]-
fluoranthene (C18H10, 7)9b,11 and benzo[c]phenanthrene
(C18H12).10b

Here we wish to report that FVT of 1,8-bis(1-chloro-
ethenyl)anthracene (2), which at T > 800 °C is quanti-
tatively converted in situ into 1,8-diethynylanthracene
(3),12 gives an unexpected entry to the abundant combus-
tion effluent cyclopenta[cd]pyrene (6). The presence of
10-ethynylaceanthrylene (4), besides 3, in the tempera-
ture range 800-900 °C in combination with the identi-
fication of 6 as primary product at T > 900 °C suggests
that 4 is converted into transient benz[mno]acean-
thrylene (5),13 which immediately rearranges into 6 under
the high-temperature conditions in the gas phase.
FVT precursor 2 was prepared in two steps from

anthracene. Bisacetylation of anthracene gave a 1:1
mixture of 1,5- and 1,8-diacetylanthracene (1); pure 1was
isolated using preparative column chromatography. Sub-
sequently, 1,8-diacetylanthracene (1) was treated with
PCl5 to give crude 1,8-bis(1-chloroethenyl)anthracene (2),
which was also purified by preparative column chroma-
tography (yield 40% from 1, see the Experimental Sec-
tion).
Aliquots of 2 (0.1 g, 10-2 Torr, sublimation temperature

140 °C and sublimation rate 0.05 g h-1) were transferred
into the unpacked quartz tube (length, 40 cm; diameter,
2 cm; and temperature range, 800-1100 °C) of our FVT
apparatus. The pyrolysate product composition was
determined using 1H NMR, capillary GC-MS, HPLC,
and authentic samples of 3,12 6,1 and 7,11 respectively,
as reference compounds. At 800 °C, 2 is quantitatively
converted into a mixture of 1,8-diethynylanthracene (3)
and 10-ethynylaceanthrylene (4,14 Scheme 1 and Table
1). Repyrolysis of the pyrolysate at 800 °C supported the
consecutive conversion of 2 into 3 and 4, respectively
[initial composition, 3, 65% and 4, 35% (mass recovery
ca. 100%); and after repyrolysis, 3, 34%; 4, 53%; and 6,
13% (mass recovery 74%)]. Corresponding results were
found upon FVT of 2 at 900 °C [pyrolysate composition,
3, 13%; 4, 40%; and 6, 47% (mass recovery 33%)]. Above
900 °C, 6 was the major low molecular weight product,
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whereas at T > 1000 °C minor amounts of benzo[ghi]-
fluoranthene (7)11 were also identified (Scheme 1 and
Table 1). The presence of 7, besides 6, indicates that the
latter rearranges presumably by a ring-contraction/ring-
expansion process (1,2-C/1,2-H shift).8c,9b It is noteworthy
that at T g 900 °C the mass recoveries decrease due to
carbonization (T ) 800 °C, ca. 100% and T > 900 °C, ca.
30%); a thin carbon lining is deposited on the wall of the
quartz tube inside the furnace.15

No evidence for the rearrangement of 4 into 10-
ethynylacephenanthrylene, which is also a potential FVT
precursor of 6 by ring-contraction/ring-expansion, was
found. This is in line with FVT experiments using either
9-ethynylanthracene or aceanthrylene in the temperature
range 800-1100 °C. At T > 1000 °C, both precursors
gave, besides aceanthrylene, acephenanthrylene in only
small amounts (ca. 5%).9e These results further cor-
roborate that, at least under FVT conditions, cyclopenta-
fusion occurs more readily than ring-contraction/ring-
expansion.8a-c,9e-f

To rationalize the formation of 6 from 4, benz[mno]-
aceanthrylene (5)13 is invoked as transient intermediate.
In going from 4 to 5, the ethynyl substituent at C(10)
has to undergo ethyne-ethylidene carbene equilibration
followed by carbene C-H insertion (Scheme 1).15 Ap-
parently, 5 is susceptible to rearrangement by ring-
contraction/ring-expansion9a,16 under the high-tempera-
ture conditions in the gas phase.

This interpretation is corroborated by AM117 calcula-
tions (Scheme 2). Benz[mno]aceanthrylene (5) is pre-
dicted to be less stable than either 6 or 7 [∆Hf °(5) ) 129.3
kcal mol-1, ∆Hf °(6) ) 109.4 kcal mol-1, and ∆Hf °(7) )
116.6 kcal mol-1]. In addition, the activation enthalpy
(∆H‡) for C-H carbene insertion in going from 9 to 5
[∆H‡(9f5) ) 12.7 kcal mol-1] is smaller than that in
going from 8 to 4 [∆H‡(8f4) ) 15.6 kcal mol-1].18 These
results give credence to our proposal that the consecutive
conversion of 3 into 4 and 5 will be viable under FVT
conditions. The fleeting existence of 5 is rationalized by
the AM1 ∆H‡ values connecting 5 to 9, 10, and 11,
respectively [∆H‡(5f9) ) 106.0 kcal mol-1, ∆H‡(5f10, 1,2-
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Table 1. Pyrolysate Product Composition Obtained
upon FVT of 2a

T/°C
mass

recovery/% 3/% 4/% 6/% 7/%

800 100 65 35
74b 34b 53b 13b

900 33c 13 40 47
1000 32c >99 <1
1100 31c 95 5
a 1H NMR integral ratios, capillary GC, and HPLC gave

identical results. bMass recovery and pyrolysate product composi-
tion after repyrolysis at 800 oC. c Carbonization occurs (see text).

Scheme 1

Scheme 2
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H) ) 89.8 kcal mol-1, and ∆H‡(5f11, 1,2-C) ) 84.6 kcal
mol-1]. These theoretical results suggest that the con-
version of 5 to either 10 [∆H‡(5f10, 1,2-H)] or 11
[∆H‡(5f11, 1,2-C)] is considerably more favorable than
the back-conversion of 5 to 9 [∆H‡(5f9), retro-carbene
C-H insertion, Scheme 2]. In addition, the AM1 ∆H‡

values for the rearrangement of 5 to 6 by either a
consecutive 1,2-C/1,2-H shift process or vice versa
[1,2-C/1,2-H, ∆H‡(5f11, 1,2-C) ) 84.6 kcal mol-1 and
∆H‡(11f6, 1,2-H) ) 11.2 kcal mol-1; 1,2-H/1,2-C,
∆H‡(5f10, 1,2-H) ) 89.8 kcal mol-1 and ∆H‡(10f6, 1,2-
C) ) 23.9 kcal mol-1] indicate that the 1,2-C/1,2-H shift
process is preferred over the 1,2-H/1,2-C shift process,
i.e. 5 presumably rearranges to 6 via carbene 11. Fur-
thermore in line with our experimental observations, the
AM1 ∆H‡ values for the rearrangement of 5 to 6 are
smaller than those for the conversion of 6 into 7
[1,2-C/1,2-H, ∆H‡(6f13, 1,2-C) ) 105.7 kcal mol-1 and
∆H‡(13f7, 1,2-H) ) 12.8 kcal mol-1; 1,2-H/1,2-C,
∆H‡(6f12, 1,2-H) ) 87.0 kcal mol-1 and ∆H‡(12f7, 1,2-
C) ) 37.0 kcal mol-1]. This is in agreement with our
temperature conversion data; 7 is obtained at the expense
of 6 at T > 1000 °C (Table 1).8c,9b,19

In summary, under FVT conditions, in situ generated
1,8-diethynylanthracene (3) is consecutively converted
into 10-ethynylaceanthrylene (4) and benz[mno]acean-
thrylene (5). Under the high-temperature conditions in
the gas phase, 5 instantaneously rearranges into cyclo-
penta[cd]pyrene (6).1,2 Hence, a novel entry to the
abundant combustion effluent 6 from a previously un-
expected C18H10 PAH precursor, viz. 3, involving consecu-
tive carbene C-H insertion reactions followed by isomer-
ization (“annealing”) processes has been disclosed. These
results contribute to the understanding of the formation
processes responsible for the ubiquitous formation of a
specific (CP)-PAH, such as 6, during combustion.

Experimental Section

General Procedures. All reactions were carried out under
a N2 atmosphere. Column chromatography was performed on
Merck Kiesegel 60 silica (230-400 ASTM). Melting points are
uncorrected. 1H (300.13 MHz) and 13C (75.47 MHz) NMR
spectra were recorded in CDCl3 with TMS as internal standard.
Caution:Many polycyclic aromatic hydrocarbons are poten-

tial mutagens and carcinogens. Hence, they should be handled
with care.
1,8-diacetylanthracene (1).20 To a cooled suspension (0 °C,

ice bath) of fresh AlCl3 (5.29 g, 40 mmol) in CH2Cl2 (30 mL) was
added 2.94 g (38 mmol) acetyl chloride. After stirring until a
clear solution was obtained, powdered anthracene (2.67 g, 15
mmol) was added in small portions at room temperature. After
stirring overnight, the reaction mixture was cooled to 0 °C (ice
bath) and hydrolyzed with 0.5 M HCl [30 mL (0 °C, ice bath)].
After standard work up a mixture of 1,5-di- and 1,8-diacetylan-
thracene (1) (ratio 1:1) was obtained (yield 3.2 g, 12 mmol, 80%).
The 1,8-diacetyl isomer was isolated and purified using prepara-
tive column chromatography (silica, eluent chloroform). Yield
of 1: 1.12 g (4 mmol, 27%). Mp: 174-176 °C (lit.20 mp: 178
°C). 1H NMR: δ 10.17 (s, 1H), 8.43 (s, 1H), 8.10 (d, 3J(H,H) )
8.5 Hz, 2H), 7.94 (d, 3J(H,H) ) 6.9 Hz, 2H), 7.48 (dd, 3J(H,H) )
6.9 Hz, 3J(H,H) ) 8.5 Hz, 2H), 2.84 (s, 6H) ppm. 13C NMR: δ
201.6, 136.5, 133.0, 131.7, 129.2, 128.8, 127.5, 124.5, 124.4 and
30.0 ppm. GC/MS: m/z (%) 262 (55) [M•+], 247 (100) [M - CH3

+],
219 (80) [M - C2H3O+].

1,8-Bis(1-chloroethenyl)anthracene (2). A mixture of 1
(1.10 g, 4.2 mmol) and PCl5 (2.19 g, 10.5 mmol) in CH2Cl2 (100
mL) was heated to reflux for 5 h. After cooling to room
temperature, water (100 mL) was added. After standard workup
and purification by preparative column chromatography (silica,
eluent chloroform), 2 was isolated as a yellow solid. Yield of 2:
0.51 g (1.7 mmol, 40%). Mp: 108-109 °C. 1H NMR: δ 9.10 (s,
1H), 8.48 (s, 1H), 8.02 (d, 3J(H,H) ) 8.6, 2H), 7.57 (d, 3J(H,H) )
7.2 Hz, 2H), 7.45 (dd, 3J(H,H) ) 7.2 Hz, 3J(H,H) ) 8.6 Hz, 2H),
5.94 (d, 2J(H,H) ) 1.1 Hz, 2H), 5.69 (d, 2J(H,H) ) 1.1 Hz, 2H).
13C NMR: δ 138.5, 137.1, 131.2, 129.7, 128.6, 127.4, 126.7, 124.9,
122.8, and 118.0 ppm. GC/MS: m/z (%) 298 (50) [M•+ with
isotope pattern], 263 (40) [(M - Cl)+ with isotope pattern].
Elemental analysis calcd for C18H12Cl2: C, 72.26; H, 4.04.
Found: C, 72.08; H, 4.07.
1,8-Diethynylanthracene (3) 1H NMR: δ 9.44 (s, 1H), 8.46

(s, 1H), 8.03 (d, 3J(H,H) ) 8.6 Hz, 2H), 7.79 (d, 3J(H,H) ) 6.9
Hz, 2H), 7.45 (dd, 3J(H,H) ) 8.6 Hz, 3J(H,H) ) 6.9 Hz, 2H), 3.62
(s, 2H). 13C NMR: δ 131.6, 131.5, 131.4, 129.5, 127.5, 125.0,
123.8, 120.4, 82.6 and 81.7 ppm. GC/MS: m/z (%) 226 (100)
[M•+]. The spectrocopic results are in agreement with available
literature data.12

10-Ethynylaceanthrylene (4).14 Compound 4 was isolated
from the 800 °C pyrolysate (50 mg) by column chromatography
(silica, eluent n-hexane). Mp: 82-84 °C. 1H NMR: δ 8.51 (d,
3J(H,H) ) 5.3 Hz, 1H), 8.48 (s, 1H), 8.11 (d, 3J(H,H) ) 8.7 Hz,
1H), 7.96 (d, 3J(H,H) ) 8.4 Hz, 1H), 7.86 (d, 3J(H,H) ) 7.0 Hz,
1H), 7.80 (d, 3J(H,H) ) 6.6 Hz, 1H), 7.59 (dd, 3J(H,H) ) 8.4 Hz,
3J(H,H) ) 6.6 Hz, 1H), 7.38 (dd, 3J(H,H) ) 8.7 Hz, 3J(H,H) )
7.0 Hz, 1H), 7.09 (d, 3J(H,H) ) 5.3 Hz, 1H), 3.58 (s, 1H). GC/
MS: m/z (%) 226 (100) [M•+]. HRMS calcd for C18H10 226.0783,
found 226.0780. It is noteworthy that upon standing at room
temperature solutions of 4 appear to undergo dimerization (1H
NMR: characteristic multiplet at δ 4.22 ppm).21 Consequently,
the 13C NMR spectrum of 4 had to be obtained from 13C NMR
spectrum of the 900 °C pyrolysate (22 mg) by comparison with
the 13C NMR data of pure 3 and 6 (See Table 1 and Supporting
Information). 13C NMR δ 139.9, 135.5, 134.5, 132.2, 131.3, 130.8,
129.5, 128.9, 127.8, 127.7, 126.7, 126.3, 126.1, 126.0, 123.7, 118.7,
84.9 and 82.0 ppm.
Cyclopenta[cd]pyrene (6). 1H NMR: δ 8.43 (d, 3J(H,H) )

7.7 Hz, 1H), 8.40 (s, 1H), 8.30 (d, 3J(H,H) ) 7.6 Hz, 1H) 8.11
(m, 3H), 8.03 (m, 2H), 7.43 (d, 3J(H,H) ) 5.1 Hz, 1H), 7.25 (d,
3J(H,H) ) 5.3 Hz, 1H). 13C NMR: δ 138.9, 135.3, 133.3, 131.7,
130.6, 130.3, 130.0, 128.3, 127.5, 127.1, 126.7, 126.6, 126.4, 126.2,
124.1, 122.4, 122.0 and 120.5 ppm. The spectrocopic results are
in agreement with available literature data.1

Benzo[ghi]fluoranthene (7). 1H NMR: δ 8.14 (d, 3J(H,H)
) 7.0 Hz, 2H), 7.95 (m, 6H), 7.70 (t, 3J(H,H) ) 7.0 Hz, 2H). 13C
NMR: δ 137.4, 133.2, 128.3, 127.7, 126.7, 126.6, 126.4, 125.0
and 123.4 ppm. The spectrocopic results are in agreement with
available literature data.11

General Flash Vacuum Thermolysis Procedure. A com-
mercial Thermolyne 21100 tube furnace containing an unpacked
quartz tube (length 40 cm and diameter 2.5 cm) was used in all
FVT experiments. The temperature conversion data was de-
termined by evaporating aliquots (0.05 g h-1) of 2 into the quartz
tube at a pressure of 10-2 Torr (Table 1). The product composi-
tion of the pyrolysates was determined using 1H NMR integra-
tion ratios, capillary GC, and HPLC.
AM1 Calculations. AM1 geometry optimization (MOPAC

6.0) was executed without imposing symmetry constraints until
GNORM ) 0.5.17 Transition states (TS) were located using a
reaction coordinate and, subsequently, refined using the Eigen-
vector Following routine (keyword TS) until GNORM ) 0.5. All
minima and transition states were characterized by a Hessian
calculation (keywords Force and Large); either none or only one
imaginary vibration, respectively, was found. ∆Hf ° and ∆H‡

values are reported in kcal mol-1 (1 cal ) 4.184 J, Scheme 2).
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